Categories
College Bookssss >
BA PU Chandigarh
BSC PU Chandigarh
MSC PU Chandigarh
BBA PU Chandigarh
MA PU Chandigarh
Medical Books
Engineering Books
Management Books
PGDCA Books
BCOM PU Chandigarh
MCOM PU Chandigarh
BCA PU Chandigarh
MCA PU Chandigarh
animate-books

Have Doubts Regarding This Product ? Ask Your Question

  • Q1
    Is this lab manual strictly based on the CBSE Class 12 syllabus?
    A1

    Yes, it follows the latest CBSE curriculum for Mathematics practicals.

  • Q2
    Does this book include graph-based experiments?
    A2

    Yes, it includes graph plotting for sin⁻¹x, logarithmic, and exponential functions.

  • Q3
    Can this manual help in understanding calculus concepts practically?
    A3

    Absolutely, it covers limits, continuity, derivatives, and applications like maxima-minima.

  • Q4
    Is this book useful for competitive exams like JEE?
    A4

    While primarily designed for CBSE, it strengthens fundamental concepts useful for JEE and other exams.

  • Q5
    Are vector and 3D geometry concepts covered?
    A5

    Yes, it includes vector methods, distance between points, and skew lines verification.

  • Q6
    Is conditional probability explained with examples?
    A6

    Yes, it demonstrates conditional probability using dice-throwing experiments.

  • Q7
    Does this manual require additional lab equipment?
    A7

    Most activities can be performed with basic geometry tools, graph paper, and calculators.

  • Q8
    Is this book suitable for self-study?
    A8

    Yes, the clear instructions and diagrams make it ideal for independent learning.

  • Q9
    Can teachers use this manual for classroom demonstrations?
    A9

    Absolutely, it serves as a great teaching aid for practical mathematics.

  • Q10
    Does it cover both differential and integral calculus?
    A10

    It focuses more on differential calculus and applications rather than integration.

0.00

0 Overall Rating
  • 5
    0
  • 4
    0
  • 3
    0
  • 2
    0
  • 1
    0

Try this product & share your review & thoughts

- ACTIVITIES

1. To verify that the relation R in the set L of all lines in a plane, defined by R = {(l, m) : l _ m}, is symmetric but neither reflexive nor transitive.
2. To verify that the relation R in the set L of all lines in a plane, defined by R = {(l, m) : l || m}, is an equivalence.
3. To demonstrate a function that is not one-to-one but is onto.
4. To demonstrate a function that is one-to-one but not onto.
5. To draw the graph of sin⁻¹x, using the graph of sin x and demonstrate the concept of mirror reflection (about the line y = x).
6. To explore the principal value of the function sin⁻¹x, using a unit circle.
7. To sketch the graphs of ax and logax, a > 0, a = 1, and to examine that they are mirror images of each other.
8. To establish a relationship between common logarithm (to the base 10) and natural logarithm (to the base e) of the number x.
9. To find analytically the limit of a function f(x) at x = c and also to check the continuity of the function at that point
10. To verify that for a function f to be continuous at a given point is arbitrarily small provided Ax is sufficiently small.
11. To understand the concepts of decreasing and increasing functions.
12. To understand the concept of local maxima, local minima, and point of inflection.
13. To understand the concepts of absolute maximum and minimum values of a function in a given closed interval through its graph.
14. To construct an open box of maximum volume from a given rectangular sheet by cutting equal squares from each corner.
15. To find the time when the area of a rectangle of given dimensions becomes maximum if the length is decreasing and the breadth is increasing at given rates.
16. To verify that amongst all the rectangles of the same perimeter, the square has the maximum area.
17. To verify that an angle in a semicircle is a right angle, use the vector method.
18. To locate the points at given coordinates in space, measure the distance between two points in space and then verify the distance using the distance formula.
19. To measure the shortest distance between two skew lines and verify it analytically.
20. To explain the computation of conditional probability of a given event A, when event B has already occurred, through an example of throwing a pair of dice.

The Evergreen Lab Manual in Mathematics for Class 12, authored by Manjit Singh and published by Evergreen Publications, is a comprehensive and practical guide designed to help students understand key mathematical concepts through hands-on activities and experiments. This lab manual is aligned with the CBSE curriculum and focuses on strengthening conceptual clarity by encouraging experiential learning.

With 20 well-structured activities, this manual covers essential topics such as relations and functions, inverse trigonometric functions, calculus, vectors, probability, and applications of derivatives. Each activity is designed to reinforce theoretical knowledge through practical verification, graphical representations, and analytical problem-solving.

Key Features

1. CBSE-Aligned Activities: Covers all essential topics as per the latest Class 12 Mathematics syllabus.
2. Step-by-Step Guidance: Each activity includes clear instructions, diagrams, and observations for easy understanding.
3. Concept Reinforcement: Helps students verify mathematical principles through experiments and graphical methods.
4. Real-Life Applications: Activities like maximizing the volume of an open box and analyzing increasing/decreasing functions connect theory with practical scenarios.
5. Graphical Illustrations: Includes graph plotting exercises for sin⁻¹x, logarithmic functions, and exponential functions to enhance visualization skills.
6. Distance and Vector Verification: Practical tasks on 3D coordinate geometry and vector methods for better spatial understanding.
7. Probability Experiments: Demonstrates conditional probability using real-world examples like dice throws.
8. Exam-Oriented Approach: Strengthens problem-solving skills for board exams and competitive tests.

Why Choose This Lab Manual?

1. Enhances Practical Skills: Bridges the gap between theory and application.
2. Supports Self-Learning: Clear explanations make it suitable for independent study.
3. Helps in Exam Preparation: Reinforces concepts crucial for CBSE board exams.
4. Ideal for Teachers and Students: Useful for classroom demonstrations and lab sessions.

This Evergreen Lab Manual in Mathematics for Class 12 is a must-have resource for students aiming to excel in practical mathematics and develop a deeper understanding of core concepts.

- ACTIVITIES

1. To verify that the relation R in the set L of all lines in a plane, defined by R = {(l, m) : l _ m}, is symmetric but neither reflexive nor transitive.
2. To verify that the relation R in the set L of all lines in a plane, defined by R = {(l, m) : l || m}, is an equivalence.
3. To demonstrate a function that is not one-to-one but is onto.
4. To demonstrate a function that is one-to-one but not onto.
5. To draw the graph of sin⁻¹x, using the graph of sin x and demonstrate the concept of mirror reflection (about the line y = x).
6. To explore the principal value of the function sin⁻¹x, using a unit circle.
7. To sketch the graphs of ax and logax, a > 0, a = 1, and to examine that they are mirror images of each other.
8. To establish a relationship between common logarithm (to the base 10) and natural logarithm (to the base e) of the number x.
9. To find analytically the limit of a function f(x) at x = c and also to check the continuity of the function at that point
10. To verify that for a function f to be continuous at a given point is arbitrarily small provided Ax is sufficiently small.
11. To understand the concepts of decreasing and increasing functions.
12. To understand the concept of local maxima, local minima, and point of inflection.
13. To understand the concepts of absolute maximum and minimum values of a function in a given closed interval through its graph.
14. To construct an open box of maximum volume from a given rectangular sheet by cutting equal squares from each corner.
15. To find the time when the area of a rectangle of given dimensions becomes maximum if the length is decreasing and the breadth is increasing at given rates.
16. To verify that amongst all the rectangles of the same perimeter, the square has the maximum area.
17. To verify that an angle in a semicircle is a right angle, use the vector method.
18. To locate the points at given coordinates in space, measure the distance between two points in space and then verify the distance using the distance formula.
19. To measure the shortest distance between two skew lines and verify it analytically.
20. To explain the computation of conditional probability of a given event A, when event B has already occurred, through an example of throwing a pair of dice.

Have Doubts Regarding This Product ? Ask Your Question

  • Q1
    Is this lab manual strictly based on the CBSE Class 12 syllabus?
    A1

    Yes, it follows the latest CBSE curriculum for Mathematics practicals.

  • Q2
    Does this book include graph-based experiments?
    A2

    Yes, it includes graph plotting for sin⁻¹x, logarithmic, and exponential functions.

  • Q3
    Can this manual help in understanding calculus concepts practically?
    A3

    Absolutely, it covers limits, continuity, derivatives, and applications like maxima-minima.

  • Q4
    Is this book useful for competitive exams like JEE?
    A4

    While primarily designed for CBSE, it strengthens fundamental concepts useful for JEE and other exams.

  • Q5
    Are vector and 3D geometry concepts covered?
    A5

    Yes, it includes vector methods, distance between points, and skew lines verification.

  • Q6
    Is conditional probability explained with examples?
    A6

    Yes, it demonstrates conditional probability using dice-throwing experiments.

  • Q7
    Does this manual require additional lab equipment?
    A7

    Most activities can be performed with basic geometry tools, graph paper, and calculators.

  • Q8
    Is this book suitable for self-study?
    A8

    Yes, the clear instructions and diagrams make it ideal for independent learning.

  • Q9
    Can teachers use this manual for classroom demonstrations?
    A9

    Absolutely, it serves as a great teaching aid for practical mathematics.

  • Q10
    Does it cover both differential and integral calculus?
    A10

    It focuses more on differential calculus and applications rather than integration.

No Syllabus Added

0.00

0 Overall Rating
  • 5
    0
  • 4
    0
  • 3
    0
  • 2
    0
  • 1
    0

Try this product & share your review & thoughts

Top Trending Product

Related Product

Related Product

Related Blog Posts

Latest Blogs

Latest Blogs

blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Utenim ad minim veniam, quis nostrud exercitation ullamco Lorem ipsum dolor sit amet, consecte...
Read more
Author name | 10 jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Utenim ad minim veniam, quis nostrud exercitation ullamco Lorem ipsum dolor sit amet, consecte...
Read more
Author name | 10 jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Utenim ad minim veniam, quis nostrud exercitation ullamco Lorem ipsum dolor sit amet, consecte...
Read more
Author name | 10 jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit...
Read more
Author Name | 10 Jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit...
Read more
Author Name | 10 Jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit...
Read more
Author Name | 10 Jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit...
Read more
Author Name | 10 Jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit...
Read more
Author Name | 10 Jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit...
Read more
Author Name | 10 Jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit...
Read more
Author Name | 10 Jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit...
Read more
Author Name | 10 Jan, 2025
blog-img
Classic Literature Reimagined: Discuss modern twists on classic novels.
Lorem ipsum dolor sit amet, consectetur adipiscing elit...
Read more
Author Name | 10 Jan, 2025