Syllabus

Paper Code: 42

Paper Title: Operating System Concepts

Maximum Marks: 80

Number of Lecture: 90

(45 Minutes duration)

L P

6 0

Objective: This course enables students to understand the concepts of Operating System. After the completion of this paper, student will be able to

- Manage various process and use scheduling algorithms.
- Handle the deadlock conditions.
- Mange the files on the disk with effective outcome.

Note:

- (i) The Question Paper will consist of Four Units.
- (ii) Examiner will set total of NINE questions comprising TWO questions from each Unit and ONE compulsory question of short answer type covering whole syllabil
- (iii) The students are required to attempt ONE question from each Unit and the Compulsory question.
- (iv) All questions carry equal marks unless specified.

UNIT-I

- 1. Introduction to Operating System: History, Structure of OS, Functions/ Operations of OS, Types: Single User, Multi-user, Simple Batch Processing, Multiprogramming, Multitasking, Parallel systems, Distributed system, Real time system.
- Process Management: Process, Process state, Process Control Block; Process scheduling: Scheduling queues, Schedulers, Context switch; Operation on process: Process creation and termination; interrupt mechanism, threads, Scheduling Algorithms: Pre-emptive and non preemptive scheduling, FCFS, SJFS, RRS, priority scheduling, Multilevel

queue scheduling, Mltilevel feedback queue scheduling, Inter process communication: Shared memory systems, Message passing systes.

UNIT-II

- 3. Process Synchronization: Concurrent Process, Race condition, Shared data; Critical section problem: Mutual exclusion, Progress, Bounded waiting; Software solution: Busy from of waiting, lock and unlock primitives, Dekker's algorithm, Peterson's solution, Baker's Algorithm, Synchronization: Semaphores, Monitors, Reader Writer Problem, Producer Consumer Problem, Dinning Philosopher Problem.
- 4. System Deadlock: System Model; Dedlock Characterization: Necessary conditions, Resource Allocation Graph; Deadlock prevention: Mutual Exclusion, Hold and Wait, No Preemption, Circular wait; Deadlock Avoidance: Safe state, unsafe state, Resource Allocation graph Algorithm, Banker's Algorithm; Deadlock Detection & Recovery from deadlock: Waitfor-graph

UNIT- III

- **5. Memory Management:** Hierarchy of memory types, Cache memory: Types: Associative memory, direct mapped, set associative
- 6. Memory Allocation: Address binding, Address Space, Memory Protection, Contiguous and Non-Contiguous allocation, Swapping, Fragmentation; Paging: Protection, Shared pages, Techniques for structuring of page table; Segmentation: Segmentation with paging; Virtual Memory: Demand paging; Page replacement Algorithms: FIFO, Optimal, LRU, LFU, MFU, Working set, Thrashing.

UNIT-IV

- 7. Storage Management: File(s): Attributes, Operations, Types, Structure; Access Methods: Sequential, Direct access, index; Directory Structure: Single level, Two level, Tree Structured, Acyclic Graph; File System mounting; File sharing; protection: Types of access, access control.
- 8. File system structure, File system implementation, Directory implementation, Allocation methods: Contiguous Allocation, Linked Allocation, Indexed Allocation; Disk scheduling: methods: Contiguous Allocation, Linked Allocation, Indexed Allocation; Disk scheduling: FCFS, SSTF, SCAN, C-SCAN, LOOK; Disk management; Swap space management; RAID