Syllabus

Module 01 **Introduction to Biopharmaceutics** Absorption

10Hours

Mechanisms of drug absorption through GIT, factors influencing drug absorption though GIT, absorption of drug from Non per oral extravascular routes.

Distribution

Tissue permeability of drugs, binding of drugs, apparent, volume of drug distribution, plasma and tissue protein binding of drugs, factors affecting protein-drug binding. Kinetics of protein binding, Clinical significance of protein binding of drugs.

Module 02 Elimination

10Hours

Drug metabolism and basic understanding metabolic pathways renal excretion of drugs, factors affecting renal excretion of drugs, renal clearance, Non-renal routes of drug excretion of drugs.

Bioavailability and Bioequivalence

Definition and Objectives of bioavailability, absolute and relative bioavailability, measurement of bioavailability, in-vitro drug dissolution models, in-vitro-in-vivo correlations, bioequivalence studies, methods to enhance the dissolution rates and bioavailability of poorly soluble drugs.

Module 03

10Hours

Pharmacokinetics

Definition and introduction to Pharmacokinetics, Compartment models, Non compartment models, physiological models, One compartment open model. Intravenous Injection (Bolus). Intravenous infusion. Extra vascular administrations.

Pharmacokinetics parameters - KE ,t1/2,Vd,AUC,Ka, Clt and CLRdefinitions methods of eliminations, understanding of their significance

and application.

Module 04

08 Hours

Multicompartment Models

Two compartment open model. IV bolus.

· Kinetics of multiple dosing, steady state drug levels, calculation of loading and mainetnance doses and their significance in clinical settins.

Module 05

07 Hours

Nonlinear Pharmacokinetics

Introduction.

Factors causing Non-linearity.

· Michaelis-menton method of estimating parameters, Explanation with example of drugs.